Respuesta :
Answer:
See below for proof.
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{6 cm}\underline{Trigonometric Identities}\\\\$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$\\ \\$\sin^2 \theta + \cos^2 \theta=1$\\\end{minipage}}[/tex]
Use the trigonometric identities to prove the given equation:
[tex]\begin{aligned} \implies \cos 4 \theta & = \cos (2 \theta +2 \theta)\\& = \cos 2 \theta \cos 2 \theta - \sin 2 \theta \sin 2 \theta\\& = \cos^2 2 \theta - \sin^2 2 \theta\\& = \cos^2 2 \theta - (1-\cos^2 2 \theta)\\& = 2\cos^2 2 \theta - 1\\ & = 2\left(\cos 2 \theta \right)^2-1\\& = 2\left(\cos\theta \cos\theta-\sin \theta\sin \theta\right)^2-1\\& = 2\left(\cos^2\theta-\sin ^2\theta\right)^2-1\\& = 2\left(\cos^2\theta-(1-\cos^2\theta)\right)^2-1\\& = 2\left(2\cos^2\theta-1\right)^2-1\\\end{aligned}[/tex]
[tex]\begin{aligned}& = 2\left(4\cos^4\theta-4\cos^2\theta+1\right)-1\\& =8\cos^4\theta-8\cos^2\theta+2-1\\ & =8\cos^4\theta-8\cos^2\theta+1 \end{aligned}[/tex]