Answer:
D.= √29
Step-by-step explanation:
The distance between the two complex numbers,
Z₁=a+bi and Z₂=c+di in the complex plane is
[tex]d = \sqrt{(c - a) {}^{2} + (d - b) {}^{2} } [/tex]
In the Cartesian plane, the distance between, one point and other is (x₁,y₁) and (x₂,y₂) is the distance formula is
[tex]d = \sqrt{(X₂-X₁)² + (Y₂-Y₁)²} [/tex]
To find the distance between the two complex numbers using the formula
[tex]d = \sqrt{(c - a) {}^{2} + (d - b) {}^{2} } [/tex]
where,
[tex]d = \sqrt{(a - b) {}^{2} + (d - b) {}^{2} } \\ d = \sqrt{(6 - 4) {}^{2} + ( - 2 - 3) {}^{2} } \\ d = \sqrt{(2) {}^{2} + ( - 5) {}^{2} } \\ d = \sqrt{4 + 25} = \sqrt{29 \\ } [/tex]