Answer:
1240 mmHg
Explanation:
Since volume is being held constant, we can use the following variation of the Ideal Gas Law to find the new pressure.
[tex]\frac{P_1}{T_1N_1}=\frac{P_2}{T_2N_2}[/tex]
In the equation, "P₁", "T₁", and "N₁" represent the initial pressure, temperature, and moles. "P₂", "T₂", and "N₂" represent the final pressure, temperature, and moles. Your answer should have 3 sig figs to match the sig figs of the given values.
P₁ = 825 mmHg P₂ = ? mmHg
T₁ = 303 K T₂ = 273 K
N₁ = 1.50 moles N₂ = 1.50 + 1.00 = 2.50 moles
[tex]\frac{P_1}{T_1N_1}=\frac{P_2}{T_2N_2}[/tex] <----- Formula
[tex]\frac{825 mmHg}{(303K)(1.50 moles)}=\frac{P_2}{(273 K)(2.50 moles)}[/tex] <----- Insert values
[tex]\frac{825 mmHg}{454.5}=\frac{P_2}{682.5}[/tex] <----- Simplify denominators
[tex]1.815=\frac{P_2}{682.5}[/tex] <----- Simplify left side
[tex]1238.86 mmHg={P_2}[/tex] <----- Multiply both sides by 682.5
[tex]1240 mmHg={P_2}[/tex] <----- Apply sig figs