Respuesta :
Answer:
44.1 L
Explanation:
Since volume is being held constant, we can use the following variation of the Ideal Gas Law to find the new pressure.
[tex]\frac{P_1}{T_1N_1}=\frac{P_2}{T_2N_2}[/tex]
In the equation, "P₁", "T₁", and "N₁" represent the initial pressure, temperature, and moles. "P₂", "T₂", and "N₂" represent the final pressure, temperature, and moles. Your answer should have 3 sig figs to match the sig figs of the given values.
P₁ = 234 atm P₂ = 68.0 atm
T₁ = 295 K T₂ = 280 K
N₁ = 144 moles N₂ = ? moles
[tex]\frac{P_1}{T_1N_1}=\frac{P_2}{T_2N_2}[/tex] <----- Equation
[tex]\frac{234 atm}{(295 K)(144 moles)}=\frac{68.0 atm}{(280 K)N_2}[/tex] <----- Insert values
[tex]\frac{234 atm}{42480}=\frac{68.0 atm}{(280 K)N_2}[/tex] <----- Multiply 295 and 144
[tex]0.00551=\frac{68.0 atm}{(280 K)N_2}[/tex] <----- Simplify left side
[tex]1.54=\frac{68.0 atm}{N_2}[/tex] <----- Multiply both sides by 280
[tex](1.54)N_2={68.0 atm}[/tex] <----- Multiply both sides by N₂
[tex]N_2 = 44.1L[/tex] <----- Divide both sides by 1.54