Respuesta :

The matrix for the linear transformation for which rotates every vector in r2 is [tex]\left[\begin{array}{cc}\frac{1}{2} &\frac{\sqrt{3} }{2} \\ \frac{\sqrt{3} }{2} &\frac{1}{2} \end{array}\right][/tex].

In this question,

The angle is -π/3 = -60°

Clockwise rotations are denoted by negative numbers.

Matrix for counter-clockwise direction for an angle α is

[tex]\left[\begin{array}{cc}cos\alpha &-sin\alpha \\-sin\alpha &cos\alpha \end{array}\right][/tex]

Then, matrix for clockwise direction for an angle α

Put α = -α in the above matrix,

⇒ [tex]\left[\begin{array}{cc}cos(-\alpha) &-sin(-\alpha) \\-sin(-\alpha) &cos(-\alpha) \end{array}\right][/tex]

⇒ [tex]\left[\begin{array}{cc}cos\alpha &sin\alpha \\sin\alpha &cos\alpha \end{array}\right][/tex]

Now substitute α = 60°

Then matrix becomes,

⇒ [tex]\left[\begin{array}{cc}cos60 &sin60 \\sin60 &cos60 \end{array}\right][/tex]

⇒ [tex]\left[\begin{array}{cc}\frac{1}{2} &\frac{\sqrt{3} }{2} \\ \frac{\sqrt{3} }{2} &\frac{1}{2} \end{array}\right][/tex]

Hence we can conclude that the matrix for the linear transformation for which rotates every vector in r2 is [tex]\left[\begin{array}{cc}\frac{1}{2} &\frac{\sqrt{3} }{2} \\ \frac{\sqrt{3} }{2} &\frac{1}{2} \end{array}\right][/tex].

Learn more about matrix for linear transformation here

https://brainly.com/question/12486975

#SPJ4