Respuesta :
Answer:
PQ ≈ 14.14 units
Step-by-step explanation:
calculate the distance d using the distance formula
d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]
with (x₁, y₁ ) = P (0, 4 ) and (x₂, y₂ ) = Q (10, - 6 )
PQ = [tex]\sqrt{(10-0)^2+(-6-4)^2}[/tex]
= [tex]\sqrt{10^2+(-10)^2}[/tex]
= [tex]\sqrt{100+100}[/tex]
= [tex]\sqrt{200}[/tex]
≈ 14.14 units ( to 2 dec. places )
Answer:
[tex]PQ=10\sqrt{2}\:\: \sf units[/tex]
Step-by-step explanation:
Distance between two points formula
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\textsf{where }(x_1,y_1) \textsf{ and }(x_2,y_2)\:\textsf{are the two points}[/tex]
Define the variables:
- Let (x₁, y₁) = (0, 4)
- Let (x₂, y₂) = (10, -6)
- d = PQ
Substitute the defined variables into the distance formula and solve for PQ:
[tex]\implies PQ=\sqrt{(10-0)^2+(-6-4)^2}[/tex]
[tex]\implies PQ=\sqrt{10^2+(-10)^2}[/tex]
[tex]\implies PQ=\sqrt{100+100}[/tex]
[tex]\implies PQ=\sqrt{200}[/tex]
[tex]\implies PQ=\sqrt{100 \cdot 2}[/tex]
[tex]\implies PQ=\sqrt{100}\sqrt{2}[/tex]
[tex]\implies PQ=10\sqrt{2}\: \sf units[/tex]
Learn more about the distance between two points here:
https://brainly.com/question/28144723