For given power series [tex]\sum_{n=0}^{\infty} \frac{(-1)^nx^n}{2^n}[/tex] the radius of convergence is 2.
For given question,
We have been given a power series [tex]\sum_{n=0}^{\infty} \frac{(-1)^nx^n}{2^n}[/tex]
We need to find the radius of convergence of the power series.
We use ratio test to find the radius of convergence of the power series.
Let [tex]a_n=\frac{(-1)^nx^n}{2^n}[/tex]
[tex]\Rightarrow a_{n+1}=\frac{(-1)^{n+1}x^{n+1}}{2^{n+1}}[/tex]
Consider,
[tex]\lim_{n \to \infty}|\frac{a_{n+1}}{a_n} |\\\\= \lim_{n \to \infty} |\frac{\frac{(-1)^{n+1}x^{n+1}}{2^{n+1}}}{ \frac{(-1)^nx^n}{2^n} } |\\\\=\lim_{n \to \infty} |\frac{(-1)^{n+1}x^{n+1}}{2^{n+1}}\times \frac{2^n}{(-1)^nx^n} |\\\\=\lim_{n \to \infty} |\frac{(-1)x}{2} |\\\\=\lim_{n \to \infty}|\frac{-x}{2} |\\\\=\frac{x}{2}[/tex]
By Ratio test, given power series converges at [tex]|\frac{x}{2} | < 1[/tex]
⇒ |x| < 2
So, the radius of convergence is 2.
Therefore, for given power series [tex]\sum_{n=0}^{\infty} \frac{(-1)^nx^n}{2^n}[/tex] the radius of convergence is 2.
Learn more about the radius of convergence here:
https://brainly.com/question/2289050
#SPJ4