Respuesta :

For given power series [tex]\sum_{n=0}^{\infty} \frac{(-1)^nx^n}{2^n}[/tex] the radius of convergence is 2.

For given question,

We have been given a power series [tex]\sum_{n=0}^{\infty} \frac{(-1)^nx^n}{2^n}[/tex]

We need to find the radius of convergence of the power series.

We use ratio test to find the radius of convergence of the power series.

Let [tex]a_n=\frac{(-1)^nx^n}{2^n}[/tex]

[tex]\Rightarrow a_{n+1}=\frac{(-1)^{n+1}x^{n+1}}{2^{n+1}}[/tex]

Consider,

[tex]\lim_{n \to \infty}|\frac{a_{n+1}}{a_n} |\\\\= \lim_{n \to \infty} |\frac{\frac{(-1)^{n+1}x^{n+1}}{2^{n+1}}}{ \frac{(-1)^nx^n}{2^n} } |\\\\=\lim_{n \to \infty} |\frac{(-1)^{n+1}x^{n+1}}{2^{n+1}}\times \frac{2^n}{(-1)^nx^n} |\\\\=\lim_{n \to \infty} |\frac{(-1)x}{2} |\\\\=\lim_{n \to \infty}|\frac{-x}{2} |\\\\=\frac{x}{2}[/tex]

By Ratio test, given power series converges at [tex]|\frac{x}{2} | < 1[/tex]

⇒ |x| < 2

So, the radius of convergence is 2.

Therefore, for given power series [tex]\sum_{n=0}^{\infty} \frac{(-1)^nx^n}{2^n}[/tex] the radius of convergence is 2.

Learn more about the radius of convergence here:

https://brainly.com/question/2289050

#SPJ4