Respuesta :
Answer:
A square matrix whose determinant is equal to zero is called singular matrix.
[tex]\huge \mathbb{ \underline{ANSWER:}}[/tex]
[tex]\leadsto[/tex] So the square matrix that has its det zero and its inverse is not defined is called a singular matrix.
[tex]\bold{Example:}[/tex]
[tex]\begin{bmatrix} \sf{3} & \sf{6} \\ \sf{2} & \sf{4}\end{bmatrix} \\ \\ \sf and \\ \begin {bmatrix} \sf{ 1} & \sf2 & { \sf2} \\ { \sf1} & { \sf2} & \sf{2} \\ \sf{3} & \sf {2} & \sf{1}\end{bmatrix}[/tex]
[tex]\huge \mathbb{ \underline{EXPLANATION:}}[/tex]
A singular matrix is a square matrix if its determinant is O. i.e., a square matrix A is singular if and only if det A = 0. The formula to find the inverse of a matrix is
▪ [tex] \bold{ {A}^{1} = \dfrac{1 \: }{det \:A } adj[A] }[/tex]
So if det A = 0 then the inverse of A will be not defined.