contestada

The function f(x) = 2x2 + 3x + 5, when evaluated, gives a value of 19. What is the function’s input value?

Respuesta :

Answer:

-7/2 or 2 are inputs that give 19 as output.

Step-by-step explanation:

The problem gives us a quadratic function [tex]\displaystyle \large{f(x)=2x^2+3x+5}[/tex]. When its output is 19, we want to know the input value(s).

Since an output which is f(x) = 19. Therefore:

[tex]\displaystyle \large{19=2x^2+3x+5}[/tex]

Rearrange the expression in quadratic equation.

[tex]\displaystyle \large{0=2x^2+3x+5-19}\\\\\displaystyle \large{0=2x^2+3x-14}\\\\\displaystyle \large{2x^2+3x-14=0}[/tex]

Factor the expression.

[tex]\displaystyle \large{(2x+7)(x-2)=0}[/tex]

Solve like linear equation which we get:

[tex]\displaystyle \large{x=-\dfrac{7}{2}, 2}[/tex]

If you input these x-values in the function, you will get 19 as the output which satisfies the condition.

Hence, inputs are -7/2, 2

Answer:

[tex]x=2, \quad x=-\dfrac{7}{2}[/tex]

Step-by-step explanation:

Set the function to 19:

[tex]\implies 2x^2+3x+5=19[/tex]

Subtract 19 from both sides:

[tex]\implies 2x^2+3x-14=0[/tex]

To factor a quadratic in the form [tex]ax^2+bx+c[/tex]

Find two numbers that multiply to [tex]ac[/tex] and sum to [tex]b[/tex]:  7 and -4

Rewrite [tex]b[/tex] as the sum of these two numbers:

[tex]\implies 2x^2-4x+7x-14=0[/tex]

Factorize the first two terms and the last two terms separately:

[tex]\implies 2x(x-2)+7(x-2)=0[/tex]

Factor out the common term (x - 2):

[tex]\implies (2x+7)(x-2)=0[/tex]

Therefore the function's input values that when evaluated give a value of 19 are:

[tex](2x+7)=0 \implies x=-\dfrac{7}{2}[/tex]

[tex](x-2)=0 \implies x=2[/tex]