Drag the tiles to the boxes to form correct pairs. Not all tiles will be used. Match the pairs of polynomials to their products. (xy + 9y + 2) and (xy – 3) x2y2 + 3x2y – 7xy – 27x – 18 (2xy + x + y) and (3xy2 – y) 6x2y3 – 2xy2 + 3x2y2 – xy + 3xy3 – y2 (x – y) and (x + 3y) x3y + 3x2 + 3x2y2 + 7xy – 6 (xy + 3x + 2) and (xy – 9) x2 – 9y2 (x2 + 3xy – 2) and (xy + 3) (x + 3y) and (x – 3y)

Respuesta :

The products of the polynomials are:

  • (xy + 9y + 2) * (xy - 3) = x²y² - xy + 9xy² - 27y - 6
  • (2xy + x + y) * (3xy² - y) = 6x²y³ - 2xy² + 3x²y² -xy + 3xy³- y²
  • (x - y) * (x + 3y) = x² + 2xy + 3y²
  • (xy + 3x + 2) * (xy – 9)  = x²y² - 7xy + 3x²y - 27x  - 18
  • (x² + 3xy - 2) * (xy + 3)  = x³y + 3x² + 3x²y² + 7xy - 6
  • (x + 3y) * (x – 3y) = x² - 9y²

How to evaluate the products?

To do this, we multiply each pair of polynomial as follows:

Pair 1: (xy + 9y + 2) and (xy – 3)

(xy + 9y + 2) * (xy - 3)

Expand

(xy + 9y + 2) * (xy - 3) = x²y² - 3xy + 9xy² - 27y + 2xy - 6

Evaluate the like terms

(xy + 9y + 2) * (xy - 3) = x²y² - xy + 9xy² - 27y - 6

Pair 2: (2xy + x + y) and (3xy² - y)

(2xy + x + y) * (3xy² - y)

Expand

(2xy + x + y) * (3xy² - y) = 6x²y³ - 2xy² + 3x²y² -xy + 3xy³- y²

Pair 3: (x – y) and (x + 3y)

(x - y) * (x + 3y)

Expand

(x - y) * (x + 3y) = x² + 3xy - yx + 3y²

Evaluate the like terms

(x - y) * (x + 3y) = x² + 2xy + 3y²

Pair 4: (xy + 3x + 2) and (xy – 9)

(xy + 3x + 2) * (xy – 9)

Expand

(xy + 3x + 2) * (xy – 9)  = x²y² - 9xy + 3x²y - 27x + 2xy - 18

Evaluate the like terms

(xy + 3x + 2) * (xy – 9)  = x²y² - 7xy + 3x²y - 27x  - 18

Pair 5: (x² + 3xy - 2) and (xy + 3)

(x² + 3xy - 2) * (xy + 3)

Expand

(x² + 3xy - 2) * (xy + 3)  = x³y + 3x² + 3x²y² + 9xy - 2xy - 6

Evaluate the like terms

(x² + 3xy - 2) * (xy + 3)  = x³y + 3x² + 3x²y² + 7xy - 6

Pair 6: (x + 3y) and (x – 3y)

(x + 3y) * (x – 3y)

Apply the difference of two squares

(x + 3y) * (x – 3y) = x² - 9y²

Read more about polynomials at:

https://brainly.com/question/4142886

#SPJ1