First note that [tex] \frac{2^n+1}{2^{n+1}} = \frac{2^n}{2^{n+1}} + \frac{1}{2^{n+1}} = \frac{1}{2} + \frac{1}{2^{n+1}}[/tex]
If you take limit, then you have [tex] \lim_{n \to \infty}( \frac{1}{2} + \frac{1}{2^{n+1}})= \lim_{n \to \infty}( \frac{1}{2}) +\lim_{n \to \infty}(\frac{1}{2^{n+1}})=\frac{1}{2} +0= \frac{1}{2} [/tex]