Respuesta :

Answer:

4√33/33

Step-by-step explanation:

Solution,

Here,

sinθ=4/7

p/h=4/7

b=?

Now using Pythagoras theorem,

[tex]\hookrightarrow h^{2} =p^{2} +b^{2} \\\\\hookrightarrow (7)^{2} =(4)^{2} +b^{2}\\\\\hookrightarrow 49-16=b^{2} \\\\\hookrightarrow b=\sqrt{33}[/tex]

Again,

tanθ=p/b

[tex]tan\theta=\frac{4}{\sqrt{33} } \\\\tan\theta=\frac{4}{\sqrt{33} } \times \frac{\sqrt{33} }{\sqrt{33} } \\\\tan\theta=\frac{4\sqrt{33} }{33}[/tex]

According to the question ,

Sin θ = 4/7

We know that , Sin θ = Perpendicular/Hypotenuse

So , by Pythagoras theorem

  • Perpendicular = 4 units
  • Hypotenuse = 7 units
  • Base = let it be x

Hypotenuse² = Perpendicular ² + Base ²

7² = 4² + x²

49-16 = x²

√33 = x

5.7 = x

So , the base is 5.7 units (approx)

Tan θ = Perpendicular/base

Tan θ = 4/5.7