Respuesta :
Answer:
4√33/33
Step-by-step explanation:
Solution,
Here,
sinθ=4/7
p/h=4/7
b=?
Now using Pythagoras theorem,
[tex]\hookrightarrow h^{2} =p^{2} +b^{2} \\\\\hookrightarrow (7)^{2} =(4)^{2} +b^{2}\\\\\hookrightarrow 49-16=b^{2} \\\\\hookrightarrow b=\sqrt{33}[/tex]
Again,
tanθ=p/b
[tex]tan\theta=\frac{4}{\sqrt{33} } \\\\tan\theta=\frac{4}{\sqrt{33} } \times \frac{\sqrt{33} }{\sqrt{33} } \\\\tan\theta=\frac{4\sqrt{33} }{33}[/tex]
According to the question ,
Sin θ = 4/7
We know that , Sin θ = Perpendicular/Hypotenuse
So , by Pythagoras theorem
- Perpendicular = 4 units
- Hypotenuse = 7 units
- Base = let it be x
Hypotenuse² = Perpendicular ² + Base ²
7² = 4² + x²
49-16 = x²
√33 = x
5.7 = x
So , the base is 5.7 units (approx)
Tan θ = Perpendicular/base
Tan θ = 4/5.7