Respuesta :
[tex]\huge\underline{\red{A}\blue{n}\pink{s}\purple{w}\orange{e}\green{r} -}[/tex]
the question asks us to rationalise the given expression !
so let's start ~
[tex] \frac{6 - 4 \sqrt{3} }{6 + 4 \sqrt{3} } \\ \\ \implies \: \frac{6 - 4 \sqrt{3} }{6 + 4 \sqrt{3} } \: \times \: \frac{6 - 4 \sqrt{3} }{6 - 4 \sqrt{3} } = \frac{(6 - 4 \sqrt{3}) {}^{2} }{6 {}^{2} - 4 \sqrt{3} {}^{2} } \\ \\ \implies \frac{\: 6 {}^{2} + 4 \sqrt{3} {}^{2} - (2 \times 6 \times 4 \sqrt{3} )}{36 - 48} \\ \\ \implies \: \frac{36 + 48 - 48 \sqrt{3} }{ - 12} \\ \\ \implies \: \frac{84 + 48 \sqrt{3} }{ - 12} \\ \\ \implies \: \frac{ \cancel{- 12}(7 - 4 \sqrt{3} )}{ \cancel{ - 12} } \\ \\ \implies \: 7 - 4 \sqrt{3} [/tex]
hope helpful :D
Answer:
-7+4√3.
Step-by-step explanation:
6-4√3 / 6+4√3 Multiply top and bottom by 6-4√3:-
= (6-4√3)( 6-4√3) / (6+4√3)(6- 4√3)
= (36-24√3- 24√3+48) / (36-48)
= (36-48√3+48) / (-12)
= -3 +4√3 - 4
= -7 + 4√3.