Respuesta :

Answer:

[tex]log_4(\frac{1}{4^5}) = -5[/tex]

Step-by-step explanation:

[tex]log_b(a) = c[/tex] ↔ [tex]b^c = a[/tex]

You are given [tex]b[/tex] = 4

You re also given [tex]c[/tex] = -5

To find a, use the exponential form:

[tex]b^c = a[/tex]

[tex]= (4)^{-5} = \frac{1}{4^5} = a[/tex]

Then you can convert into a logarithm.

[tex]log_4(\frac{1}{4^5}) = -5[/tex]

Answer:

There are multiple ways of writing this:

[tex]\sf -5log_4(4)=log_4(4^{-5})=log_4\left(\dfrac{1}{4^5}\right)=log_4\left(\dfrac{1}{1024}\right)[/tex]

Step-by-step explanation:

Log rule:  [tex]\sf log_a(a)=1[/tex]

[tex]\sf \implies log_4(4)=1[/tex]

[tex]\sf \implies -5log_4(4)=-5[/tex]

Log rule:  [tex]\sf c \cdot log_ab=log_a(b^c)[/tex]

[tex]\sf \implies -5log_4(4)=log_4(4^{-5})[/tex]

                       [tex]\sf = log_4\left(\dfrac{1}{4^5}\right)[/tex]

                       [tex]\sf = log_4\left(\dfrac{1}{1024}\right)[/tex]