Respuesta :

42°

Step-by-step explanation:

[tex]\angle BAE =180\degree -132\degree[/tex]

(Angles in linear pair)

[tex]\angle BAE =48\degree[/tex]

[tex]\angle AEB =90\degree..(\because \overrightarrow{EC}\perp\overrightarrow{ED})[/tex]

[tex]\angle ABE = 180\degree-(48\degree+90\degree)[/tex]

(Angle sum postulate of a triangle)

[tex]\implies\angle ABE = 180\degree-138\degree[/tex]

[tex]\implies\angle ABE = 42\degree[/tex]

[tex]\angle CDE =\angle ABE = 42\degree[/tex]

(corresponding angles)

[tex]\implies x\degree=\angle CDE[/tex]

(vertical angles)

[tex]\implies x\degree=42\degree[/tex]

[tex]\implies x=42[/tex]