Answer:
1.255 L
Explanation:
Assuming that carbon dioxide acts as an ideal gas given the following conditions, using the ideal gas equation shown below
[tex]pV \ = \ nRT[/tex],
and since
[tex]n \ = \ \displaystyle\frac{m}{M_{r}}[/tex],
rewriting and rearranging the prior equation to make the variable [tex]V[/tex] the subject, yields
[tex]V \ = \ \displaystyle\frac{mRT}{pM_{r}}[/tex],
where [tex]V[/tex] is the volume occupied by the gas, [tex]m[/tex] is the mass of the gas, [tex]R[/tex] is the gas constant, [tex]T[/tex] is the temperature in Kelvins, [tex]p[/tex] is the pressure exerted by the gas and [tex]M_{r}[/tex] is the molecular weight of the gas molecule.
Therefore, plugging the given values into the rearranged equation,
[tex]V \ = \ \displaystyle\frac{(2.2 \ \text{g})(0.08314 \ \text{L} \ \text{bar} \ \text{mol}^{-1} \ \text{K}^{-1})(27 \ + \ 275) \text{K}}{(1 \ \text{bar})(12 + 2 \times16)\text{g mol}^{-1}} \\ \\ V \ = \ 1.255 \ \text{L} \quad \text{(4 s.f.)}[/tex]