Respuesta :
Answer:
[tex]\boxed {\boxed {\sf 3.335 \times 10^{-11} \ N}}[/tex]
Explanation:
We are asked to find the force of gravity between 2 objects. The following formula is used to calculate the attractive force of gravity:
[tex]F_g= \frac{Gm_1m_2}{r^2}[/tex]
G is the universal gravitational constant or 6.67 × 10⁻¹¹ N*m²/kg². 1 mass is 1 kilogram and the other mass is 2 kilograms. R is the distance between the 2 objects, or 2 meters.
- G= 6.67 × 10⁻¹¹ N*m²/kg²
- m₁ = 1 kg
- m₂ = 2 kg
- r= 2 m
Substitute the values into the formula.
[tex]F_g= \frac {(6.67 \times 10^{-11} \ N*m^2/kg^2)(1 \ kg)(2\ kg)}{( 2 \ m)^2}[/tex]
Multiply the numerator. The units of kilograms squared cancel.
[tex]F_g= \frac {(6.67 \times 10^{-11} \ N*m^2/kg^2)(2 kg^2)}{(2 \ m)^2}[/tex]
[tex]F_g= \frac {(6.67 \times 10^{-11} \ N*m^2)(2 )}{( 2 \ m)^2}[/tex]
[tex]F_g= \frac {(1.334 \times 10^{-10} \ N*m^2)}{ (2 \ m)^2}[/tex]
Solve the exponent in the denominator.
- (2 m)²= 2 m*2m = 4 m²
[tex]F_g =\frac {(1.334 \times 10^{-10} \ N*m^2)}{ 4 \ m^2}[/tex]
The units of meters squared cancel.
[tex]F_g =\frac {(1.334 \times 10^{-10} \ N)}{ 4}[/tex]
[tex]F_g=3.335 \times 10^{-11} \ N[/tex]
The force of gravity between the fruit is 3.335 × 10⁺¹¹ Newtons.