Respuesta :
Answer:
1/5
Step-by-step explanation:
Law of Exponent I
[tex] \displaystyle \large{ {a}^{ - n} = \frac{1}{ {a}^{n} } }[/tex]
Compare the expression:
- a = 25
- n = 1/2
Therefore:-
[tex] \displaystyle \large{ {25}^{ - \frac{1}{2} } = \frac{1}{ {25}^{ \frac{1}{2} } } }[/tex]
Law of Exponent II
[tex] \displaystyle \large{ {a}^{ \frac{1}{2} } = \sqrt{a} }[/tex]
Derived from:
[tex] \displaystyle \large{ {a}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } }[/tex]
Therefore:-
[tex] \displaystyle \large{ {25}^{ - \frac{1}{2} } = \frac{1}{ {25}^{ \frac{1}{2} } } } \\ \displaystyle \large{ {25}^{ - \frac{1}{2} } = \frac{1}{ \sqrt{25} } } \\ \displaystyle \large{ {25}^{ - \frac{1}{2} } = \frac{1}{ 5} }[/tex]
Answer:
[tex]\frac{1}{5}[/tex]
Step-by-step explanation:
Using the rules of exponents
[tex]a^{-m}[/tex] = [tex]\frac{1}{a^{m} }[/tex]
[tex]a^{\frac{1}{2} }[/tex] = [tex]\sqrt{a}[/tex]
[tex]25^{-\frac{1}{2} }[/tex]
= [tex]\frac{1}{25^{\frac{1}{2} } }[/tex]
= [tex]\frac{1}{\sqrt{25} }[/tex]
= [tex]\frac{1}{5}[/tex]