Respuesta :

Answer:

1/5

Step-by-step explanation:

Law of Exponent I

[tex] \displaystyle \large{ {a}^{ - n} = \frac{1}{ {a}^{n} } }[/tex]

Compare the expression:

  • a = 25
  • n = 1/2

Therefore:-

[tex] \displaystyle \large{ {25}^{ - \frac{1}{2} } = \frac{1}{ {25}^{ \frac{1}{2} } } }[/tex]

Law of Exponent II

[tex] \displaystyle \large{ {a}^{ \frac{1}{2} } = \sqrt{a} }[/tex]

Derived from:

[tex] \displaystyle \large{ {a}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } }[/tex]

Therefore:-

[tex] \displaystyle \large{ {25}^{ - \frac{1}{2} } = \frac{1}{ {25}^{ \frac{1}{2} } } } \\ \displaystyle \large{ {25}^{ - \frac{1}{2} } = \frac{1}{ \sqrt{25} } } \\ \displaystyle \large{ {25}^{ - \frac{1}{2} } = \frac{1}{ 5} }[/tex]

Answer:

[tex]\frac{1}{5}[/tex]

Step-by-step explanation:

Using the rules of exponents

[tex]a^{-m}[/tex] = [tex]\frac{1}{a^{m} }[/tex]

[tex]a^{\frac{1}{2} }[/tex] = [tex]\sqrt{a}[/tex]

[tex]25^{-\frac{1}{2} }[/tex]

= [tex]\frac{1}{25^{\frac{1}{2} } }[/tex]

= [tex]\frac{1}{\sqrt{25} }[/tex]

= [tex]\frac{1}{5}[/tex]