In a circus performance, a monkey is strapped to a sled and both are given an initial speed of 3.0 m/s up a 22.0° inclined track. The combined mass of monkey and sled is 14 kg, and the coefficient of kinetic friction between sled and incline is 0.20. How far up the incline do the monkey and sled move?

Respuesta :

Answer:

Approximately [tex]0.31\; \rm m[/tex], assuming that [tex]g = 9.81\; \rm N \cdot kg^{-1}[/tex].

Step-by-step explanation:

Initial kinetic energy of the sled and its passenger:

[tex]\begin{aligned}\text{KE} &= \frac{1}{2}\, m \cdot v^{2} \\ &= \frac{1}{2} \times 14\; \rm kg \times (3.0\; \rm m\cdot s^{-1})^{2} \\ &= 63\; \rm J\end{aligned}[/tex] .

Weight of the slide:

[tex]\begin{aligned}W &= m \cdot g \\ &= 14\; \rm kg \times 9.81\; \rm N \cdot kg^{-1} \\ &\approx 137\; \rm N\end{aligned}[/tex].

Normal force between the sled and the slope:

[tex]\begin{aligned}F_{\rm N} &= W\cdot \cos(22^{\circ}) \\ &\approx 137\; \rm N \times \cos(22^{\circ}) \\ &\approx 127\; \rm N\end{aligned}[/tex].

Calculate the kinetic friction between the sled and the slope:

[tex]\begin{aligned} f &= \mu_{k} \cdot F_{\rm N} \\ &\approx 0.20\times 127\; \rm N \\ &\approx 25.5\; \rm N\end{aligned}[/tex].

Assume that the sled and its passenger has reached a height of [tex]h[/tex] meters relative to the base of the slope.

Gain in gravitational potential energy:

[tex]\begin{aligned}\text{GPE} &= m \cdot g \cdot (h\; {\rm m}) \\ &\approx 14\; {\rm kg} \times 9.81\; {\rm N \cdot kg^{-1}} \times h\; {\rm m} \\ & \approx (137\, h)\; {\rm J} \end{aligned}[/tex].

Distance travelled along the slope:

[tex]\begin{aligned}x &= \frac{h}{\sin(22^{\circ})} \\ &\approx \frac{h\; \rm m}{0.375}\end{aligned}[/tex].

The energy lost to friction (same as the opposite of the amount of work that friction did on this sled) would be:

[tex]\begin{aligned} & - (-x)\, f \\ = \; & x \cdot f \\ \approx \; & \frac{h\; {\rm m}}{0.375}\times 25.5\; {\rm N} \\ \approx\; & (68.1\, h)\; {\rm J}\end{aligned}[/tex].

In other words, the sled and its passenger would have lost (approximately) [tex]((137 + 68.1)\, h)\; {\rm J}[/tex] of energy when it is at a height of [tex]h\; {\rm m}[/tex].

The initial amount of energy that the sled and its passenger possessed was [tex]\text{KE} = 63\; {\rm J}[/tex]. All that much energy would have been converted when the sled is at its maximum height. Therefore, when [tex]h\; {\rm m}[/tex] is the maximum height of the sled, the following equation would hold.

[tex]((137 + 68.1)\, h)\; {\rm J} = 63\; {\rm J}[/tex].

Solve for [tex]h[/tex]:

[tex](137 + 68.1)\, h = 63[/tex].

[tex]\begin{aligned} h &= \frac{63}{137 + 68.1} \approx 0.31\; \rm m\end{aligned}[/tex].

Therefore, the maximum height that this sled would reach would be approximately [tex]0.31\; \rm m[/tex].