Respuesta :
Answer:
SSS
∆PQR = 43
Step-by-step explanation:
The postulate to solve ∆PQR ≅ ∆STU is SSS. Both of the triangles have all three sides given, which means it can be solved for congruence.
9 + 6y + 5 + 14 = 9 + 8y +14
28 + 6y = 9 + 8y + 14
28 + 6y = 8y + 23
-6y -6y
--------------------------
28 = 2y + 23
-23 -23
---------------------
5 = 2y
---- ----
2 2
2.5 = y
9 + 14 + 6(2.5) + 5
23 + 15 + 5
23 + 20
43
∆PQR = 43
Answer:
Solution given:
In ∆ PQR and ∆ STQ
PQ=ST=9ft given
<Q=<T given
QR=TU = 14ft [given]
S.A.S axiom therom is used to prove
∆PQR ≅ ∆STU
Since ∆PQR ≅ ∆STU
their corresponding side is equal.so
6y+5=8y
5=8y-6y
2y=5
y=5/2
now
perimeter of ∆ PQR=sum of all sides
=9ft +14ft+ 6*5/2+5=43ft