Respuesta :
Answer:
x < [tex]\frac{15-3a}{a-4}[/tex]; a > 4
a < [tex]\frac{4x+15}{x+3}[/tex]
Step-by-step explanation:
ax+3a < 4x + 15
ax - 4x < 15 - 3a
x( a -4) < 15 - 3a
x < [tex]\frac{15-3a}{a-4}[/tex]
ax + 3a < 5x + 15 -x
ax + 3a < 4x + 15
a( x + 3) < 4x + 15
a < [tex]\frac{4x+15}{x+3}[/tex]
Answer:
x < (15 - 3a) / (a - 4). ( only true if a > 4)
a < (x + 15)/x
Step-by-step explanation:
a(x + 3) < 5x + 15 - x
ax + 3a < 5x + 15 - x
ax - 5x + x < 15 - 3a
ax - 4x < 15 - 3a
x(a - 4) < 15 - 3a
Dividing both sides by (a - 4):
x < (15 - 3a) / (a - 4)
a < (x + 15)/x