Respuesta :

Answer:

x < [tex]\frac{15-3a}{a-4}[/tex]; a > 4

a < [tex]\frac{4x+15}{x+3}[/tex]

Step-by-step explanation:

ax+3a < 4x + 15

ax - 4x < 15 - 3a

x( a -4) < 15 - 3a

x < [tex]\frac{15-3a}{a-4}[/tex]

ax + 3a < 5x + 15 -x

ax + 3a < 4x + 15

a( x + 3) < 4x + 15

a < [tex]\frac{4x+15}{x+3}[/tex]

Answer:

x <  (15 - 3a) / (a - 4). ( only true if a > 4)

a < (x + 15)/x

Step-by-step explanation:

a(x + 3) < 5x + 15 - x

ax + 3a < 5x + 15 - x

ax  - 5x + x < 15 - 3a

ax - 4x < 15 - 3a

x(a - 4) < 15 - 3a

Dividing both sides by (a - 4):

x <  (15 - 3a) / (a - 4)

a < (x + 15)/x