[tex]{ \boxed{\boxed{\begin{array}{cc} \maltese \bf \: given \\ \\ \rm \: f(x) = ( {x}^{2} + 16)( {x}^{2} - 9) \\ \\ \bf \: for \: zeroes \\ \\ \pink{ \boxed{\boxed{\begin{array}{c | c} \bf \: {x}^{2} + 16 = 0 & \bf \: {x}^{2} - 9 = 0 \\ \\ = > {x}^{2} = - 16& {x}^{2} = 9 \\ \\ = > x = \pm \sqrt{ - 16} &x = \pm \: \sqrt{9} \\ \\ = > x = \pm \sqrt{ {i}^{2} {4}^{2} } &x = \pm \: \sqrt{ {3}^{2} } \\ \\ = > x = \pm \: 4i&x = \pm3 \end{array}}}} \\ \\ \rm \: x = \pm3 \: and \pm \: 4i\end{array}}}}[/tex]
Option A is the correct answer