Respuesta :
Answer:
[tex]\displaystyle \bigg( \frac{F}{G} \bigg)(-7) = \frac{34}{11}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Functions
- Function Notation
Step-by-step explanation:
Step 1: Define
Identify
F(x) = x² - 15
G(x) = 4 - x
Step 2: Find
- Substitute in functions: [tex]\displaystyle \bigg( \frac{F}{G} \bigg)(x) = \frac{x^2 - 15}{4 - x}[/tex]
Step 3: Evaluate
- Substitute in x [Function (F/G)(x)]: [tex]\displaystyle \bigg( \frac{F}{G} \bigg)(-7) = \frac{(-7)^2 - 15}{4 - (-7)}[/tex]
- Exponents: [tex]\displaystyle \bigg( \frac{F}{G} \bigg)(-7) = \frac{49 - 15}{4 - (-7)}[/tex]
- Subtract: [tex]\displaystyle \bigg( \frac{F}{G} \bigg)(-7) = \frac{34}{11}[/tex]