Answer:
[tex]P(x = 3) = 0.048[/tex]
Step-by-step explanation:
Given
[tex]n = 10[/tex]
[tex]p=59\% = 0.59[/tex]
Required
[tex]P(x = 3)[/tex] --- probability that 3 are afflicted
This question illustrates binomial probability and it is calcuated using:
[tex]P(x) = ^nC_x * p^x * (1 - p)^{n-x}[/tex]
So, we have:
[tex]P(x = 3) = ^{10}C_3 * 0.59^3 * (1 - 0.59)^{10-3}[/tex]
[tex]P(x = 3) = ^{10}C_3 * 0.59^3 * 0.41^7[/tex]
[tex]P(x = 3) = 120 * 0.59^3 * 0.41^7[/tex]
[tex]P(x = 3) = 0.048[/tex]