Which expression is equal to 5/(sqrt)11?
a) 5(sqrt)11/11
b) (sqrt)5/11
c) (sqrt)55/11
d) 25/11
please help, I'm confused.

Respuesta :

5/√11
In this case:
if you want to delete the roots in the denominator you have to multiply the numerator and the denominator by √11; therefore:
(5/√11)(√11/√11)=5√11/11.

answer; a)5√11/11

Answer:

Option A is correct

the expression is equal to [tex]\frac{5}{ \sqrt{11}}[/tex] is [tex]\frac{5\sqrt{11}} {11}[/tex]

Explanation:

Given expression is, [tex]\frac{5}{ \sqrt{11}}[/tex]

Multiply and divide by the denominator by [tex]\sqrt{11}[/tex] in the given expression, we have,

[tex]\frac{5}{\sqrt{11}} \times \frac{\sqrt{11}} { \sqrt{11}}[/tex]

or

[tex]\frac{5 \cdot \sqrt{11}} {\sqrt{11} \cdot \sqrt{11}}[/tex]

use : [tex]\sqrt{a}\cdot\sqrt{a}=(\sqrt{a} )^2 = a[/tex]

then;

[tex]\frac{5\sqrt{11}} { (\sqrt{11})^2} =\frac{5\sqrt{11}} {11}[/tex]

Therefore, the expression is equal to [tex]\frac{5}{ \sqrt{11}}[/tex] is, [tex]\frac{5\sqrt{11}} {11}[/tex]