Here's the solution,
=》
[tex] {x}^{2} - 3x = - \dfrac{5}{4} [/tex]
=》
[tex] {x}^{2} - 3x + \dfrac{5}{4} = 0[/tex]
now, let's multiply the whole equation with 4
=》
[tex]4 {x}^{2} - 12x + 5 = 0[/tex]
=》
[tex]4 {x}^{2} - 10x - 2x + 5= 0[/tex]
=》
[tex]2x(2x - 5) - 1(2x - 5) = 0[/tex]
=》
[tex](2x - 1)(2x - 5) = 0[/tex]
so,
Case 1. where, 2x - 5 = 0
=》
[tex]x = \dfrac{5}{2} [/tex]
case 2. where, 2x - 1 = 0
=》
[tex]x = \dfrac{1}{2} [/tex]