Answer:
See Explanation
Step-by-step explanation:
Given
Base Dimension
[tex]Length = 4\frac{1}{4}yd[/tex]
[tex]Width = 1\frac{2}{3}yd[/tex]
Required
The base area of all containers
First, calculate the base area of 1 container.
This is calculated as:
[tex]Area = Length * Width[/tex]
[tex]Area = 4\frac{1}{4}yd * 1\frac{2}{3}yd[/tex]
Express as improper fraction
[tex]Area = \frac{17}{4}yd * \frac{5}{3}yd[/tex]
So, we have:
[tex]Area = \frac{17*5}{4*3}yd^2[/tex]
[tex]Area = \frac{85}{12}yd^2[/tex]
The number of containers is not given. So, I will use 'n' as the number of containers.
So, we have:
[tex]Total = n * Area[/tex]
[tex]Total= n * \frac{85}{12}yd^2[/tex]
--------------------------------------------------------------------------------------------
Assume n is 3 (i.e. 3 containers)
The total area is:
[tex]Total= 3 * \frac{85}{12}yd^2[/tex]
[tex]Total= \frac{85}{4}yd^2[/tex]
[tex]Total= 21\frac{1}{4}yd^2[/tex]
--------------------------------------------------------------------------------------------