Answer:
[tex]f^{-1}(6) = 50[/tex]
Step-by-step explanation:
Given
[tex]f(x) = \sqrt{2x} - 4[/tex]
Required
Find [tex]f^{-1}(6)[/tex]
First, we calculate the inverse function
[tex]f(x) = \sqrt{2x} - 4[/tex]
Express f(x) as y
[tex]y = \sqrt{2x} - 4[/tex]
Swap the positions of x and y
[tex]x = \sqrt{2y} - 4[/tex]
Solve for y: Add 4 to both sides
[tex]4 + x = \sqrt{2y} - 4+4[/tex]
[tex]4 + x = \sqrt{2y}[/tex]
Square both sides
[tex](4 + x)^2 = 2y[/tex]
Divide both sides by 2
[tex]y = \frac{(4 + x)^2}{2}[/tex]
Express y as an inverse function
[tex]f^{-1}(x) = \frac{(4 + x)^2}{2}[/tex]
Next, solve for: [tex]f^{-1}(6)[/tex]
Substitute 6 for x
[tex]f^{-1}(6) = \frac{(4 + 6)^2}{2}[/tex]
[tex]f^{-1}(6) = \frac{(10)^2}{2}[/tex]
[tex]f^{-1}(6) = \frac{100}{2}[/tex]
[tex]f^{-1}(6) = 50[/tex]