Help me please!
Consider the function f(x) = V2x – 4. Iff-'(x) is the inverse function of f(x), find
f-16)

Help me please Consider the function fx V2x 4 Iffx is the inverse function of fx find f16 class=

Respuesta :

Answer:

[tex]f^{-1}(6) = 50[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \sqrt{2x} - 4[/tex]

Required

Find [tex]f^{-1}(6)[/tex]

First, we calculate the inverse function

[tex]f(x) = \sqrt{2x} - 4[/tex]

Express f(x) as y

[tex]y = \sqrt{2x} - 4[/tex]

Swap the positions of x and y

[tex]x = \sqrt{2y} - 4[/tex]

Solve for y: Add 4 to both sides

[tex]4 + x = \sqrt{2y} - 4+4[/tex]

[tex]4 + x = \sqrt{2y}[/tex]

Square both sides

[tex](4 + x)^2 = 2y[/tex]

Divide both sides by 2

[tex]y = \frac{(4 + x)^2}{2}[/tex]

Express y as an inverse function

[tex]f^{-1}(x) = \frac{(4 + x)^2}{2}[/tex]

Next, solve for: [tex]f^{-1}(6)[/tex]

Substitute 6 for x

[tex]f^{-1}(6) = \frac{(4 + 6)^2}{2}[/tex]

[tex]f^{-1}(6) = \frac{(10)^2}{2}[/tex]

[tex]f^{-1}(6) = \frac{100}{2}[/tex]

[tex]f^{-1}(6) = 50[/tex]