Given:
The functions are
[tex]f(x)=4x^2+7x-5[/tex]
[tex]g(x)=-9x^2+4x-13[/tex]
To find:
The functions [tex](f+g)(x)[/tex] and [tex](f-g)(x)[/tex].
Solution:
We know that,
[tex](f+g)(x)=f(x)+g(x)[/tex]
[tex](f+g)(x)=4x^2+7x-5-9x^2+4x-13[/tex]
[tex](f+g)(x)=(4x^2-9x^2)+(7x+4x)+(-5-13)[/tex]
[tex](f+g)(x)=-5x^2+11x-18[/tex]
And,
[tex](f-g)(x)=f(x)-g(x)[/tex]
[tex](f-g)(x)=(4x^2+7x-5)-(-9x^2+4x-13)[/tex]
[tex](f+g)(x)=4x^2+7x-5+9x^2-4x+13[/tex]
[tex](f+g)(x)=(4x^2+9x^2)+(7x-4x)+(-5+13)[/tex]
[tex](f-g)(x)=13x^2+3x+8[/tex]
Therefore, the required functions are [tex](f+g)(x)=-5x^2+11x-18[/tex]
and [tex](f-g)(x)=13x^2+3x+8[/tex].