For the following pair of functions, find (f+g)(x) and (f-g)(x).
f(x)= 4x2 + 7x-5 and g(x)= - 9x² + 4x - 13
(f+g)(x) = 0
(Simplify your answer. Type in descending order.)
(f-g)(x) =
(Simplify your answer. Type in descending order.)

Respuesta :

Given:

The functions are

[tex]f(x)=4x^2+7x-5[/tex]

[tex]g(x)=-9x^2+4x-13[/tex]

To find:

The functions [tex](f+g)(x)[/tex] and [tex](f-g)(x)[/tex].

Solution:

We know that,

[tex](f+g)(x)=f(x)+g(x)[/tex]

[tex](f+g)(x)=4x^2+7x-5-9x^2+4x-13[/tex]

[tex](f+g)(x)=(4x^2-9x^2)+(7x+4x)+(-5-13)[/tex]

[tex](f+g)(x)=-5x^2+11x-18[/tex]

And,

[tex](f-g)(x)=f(x)-g(x)[/tex]

[tex](f-g)(x)=(4x^2+7x-5)-(-9x^2+4x-13)[/tex]

[tex](f+g)(x)=4x^2+7x-5+9x^2-4x+13[/tex]

[tex](f+g)(x)=(4x^2+9x^2)+(7x-4x)+(-5+13)[/tex]

[tex](f-g)(x)=13x^2+3x+8[/tex]

Therefore, the required functions are [tex](f+g)(x)=-5x^2+11x-18[/tex]

and [tex](f-g)(x)=13x^2+3x+8[/tex].