Respuesta :

Answer:

The value of p = 6.

Step-by-step explanation:

Given the expression

[tex]\left(3.14\cdot \:18\right)\cdot \:17.5=3.14\left(3p\cdot \:17.5\right)[/tex]

Solving for p

[tex]\left(3.14\cdot \:18\right)\cdot \:17.5=3.14\left(3p\cdot \:17.5\right)[/tex]

switch sides

[tex]3.14\left(3p\cdot \:17.5\right)=\left(3.14\cdot \:18\right)\cdot \:17.5[/tex]

Remove parentheses:  (a) = a

[tex]3.14\left(3p\cdot \:17.5\right)=3.14\cdot \:18\cdot \:17.5[/tex]

Multiply the numbers:  [tex]3.14\cdot \:18\cdot \:17.5=989.1[/tex]

[tex]3.14\left(3p\cdot \:17.5\right)=989.1[/tex]

Multiply both sides by 100

[tex]3.14\cdot \:3p\cdot \:17.5\cdot \:100=989.1\cdot \:100[/tex]

Refine

[tex]16485p=98910[/tex]

Divide both sides by 16485

[tex]\frac{16485p}{16485}=\frac{98910}{16485}[/tex]

Simplify

[tex]p=6[/tex]

Therefore, the value of p = 6.