Answer:
The volume is: [tex]V = \frac{\pi}{3}[/tex] cubic units
Step-by-step explanation:
Volume of a solid:
The volume of a solid, given by the function f(x), over an interval between a and b, is given by:
[tex]V = \pi \int_{a}^{b} (f(x))^2 dx[/tex]
y = x, y =1, x = 0
This means that the upper function is y = 1, and the lower function is y = x. So
[tex]f(x) = (1 - x)[/tex]
The lower limit of integration is x = 0.
The upper limit is y = x when y = 1, so x = 1.
Then
[tex]V = \pi \int_{a}^{b} (f(x))^2 dx[/tex]
[tex]V = \pi \int_{0}^{1} (1-x)^2 dx[/tex]
[tex]V = \pi \int_{0}^{1} (1-2x+x^2) dx[/tex]
[tex]V = \pi (x-x^2+\frac{x^3}{3})|_{0}^{1} dx[/tex]
[tex]V = \pi(1 - (1^2) + \frac{1^3}{3})[/tex]
[tex]V = \frac{\pi}{3}[/tex]