Respuesta :

Answer:

Equation of the straight line passing through the point ( 4,2) and (7,-3) is

5 x + 4y - 28=0

Step-by-step explanation:

Step(i):-

Given points are ( 4,2 0 and ( 7,-3)

Slope of the line

         [tex]m = \frac{y_{2}-y_{1} }{x_{2} -x_{1} } = \frac{-3-2}{7-4} = \frac{-5}{4}[/tex]

Step(ii):-

Equation of the straight line passing through the point ( 4,2) and

having slope m = [tex]\frac{-5}{4}[/tex]

y - y₁ = m( x- x₁ )

[tex]y - 2 = \frac{-5}{4} ( x-4)[/tex]

4( y -2) = -5( x-4)

4 y - 8 = - 5x +20

5x +4y -8 -20=0

5 x + 4y - 28=0

Final answer:-

Equation of the straight line passing through the point ( 4,2) and (7,-3) is

5 x + 4y - 28=0