Answer: Choice B) [tex]\frac{5\sqrt{11}+5\sqrt{3}}{8}\\\\[/tex]
==========================================
Work Shown:
[tex]\frac{5}{\sqrt{11}-\sqrt{3}}\\\\\\\frac{5(\sqrt{11}+\sqrt{3})}{(\sqrt{11}-\sqrt{3})(\sqrt{11}+\sqrt{3})}\\\\\\\frac{5\sqrt{11}+5\sqrt{3}}{(\sqrt{11})^2-(\sqrt{3})^2}\\\\\\\frac{5\sqrt{11}+5\sqrt{3}}{11-3}\\\\\\\frac{5\sqrt{11}+5\sqrt{3}}{8}\\\\\\[/tex]
This shows why choice B is the answer.
---------------
Explanation:
So in general, if the denominator is [tex]\sqrt{a}-\sqrt{b}[/tex] and you want to rationalize the denominator, then you should multiply top and bottom by [tex]\sqrt{a}+\sqrt{b}[/tex]. The same applies in reverse as well.
This leads to the denominator becoming [tex](\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b}) = (\sqrt{a})^2-(\sqrt{b})^2 = a-b[/tex]
Keep in mind that [tex]a \ge 0[/tex] and [tex]b \ge 0[/tex]