Respuesta :
Answer:
3a = [tex]\frac{9}{2}[/tex]
Step-by-step explanation:
Given
2a + 4b = 5 ← substitute a = 3b into the equation
2(3b) + 4b = 5
6b + 4b = 5
10b = 5 ( divide both sides by 10 )
b = [tex]\frac{5}{10}[/tex] = [tex]\frac{1}{2}[/tex]
Now
a = 3b = 3 × [tex]\frac{1}{2}[/tex] = [tex]\frac{3}{2}[/tex] , thus
3a = 3 × [tex]\frac{3}{2}[/tex] = [tex]\frac{9}{2}[/tex]
Answer:
The value of 3a = 9/2
Step-by-step explanation:
Given the expression
[tex]2a+4b=5[/tex]
Given that a is equal to three times b. so,
[tex]a = 3b[/tex]
plug in a = 3b in the expression
[tex]2a+4b=5[/tex]
[tex]2(3b) + 4b = 5[/tex]
[tex]6b+4b = 5[/tex]
Adding like terms: 6b+4b = 10b
[tex]10b = 5[/tex]
Dividing both sides by 10
[tex]\frac{10b}{10}=\frac{5}{10}[/tex]
simplify
[tex]b=\frac{1}{2}[/tex]
so
a = 3b ⇒ a = 3(1/2) = 3/2
Therefore, the value of 3a can be determined by substituting a = 3/2 in 3a.
3a = 3(3/2) = 9/2
Therefore, the value of 3a = 9/2