Respuesta :

Answer:

3a = [tex]\frac{9}{2}[/tex]

Step-by-step explanation:

Given

2a + 4b = 5 ← substitute a = 3b into the equation

2(3b) + 4b = 5

6b + 4b = 5

10b = 5 ( divide both sides by 10 )

b = [tex]\frac{5}{10}[/tex] = [tex]\frac{1}{2}[/tex]

Now

a = 3b = 3 × [tex]\frac{1}{2}[/tex] = [tex]\frac{3}{2}[/tex] , thus

3a = 3 × [tex]\frac{3}{2}[/tex] = [tex]\frac{9}{2}[/tex]

Answer:

The value of 3a = 9/2

Step-by-step explanation:

Given the expression

[tex]2a+4b=5[/tex]

Given that a is equal to three times b. so,

[tex]a = 3b[/tex]

plug in a = 3b in the expression

[tex]2a+4b=5[/tex]

[tex]2(3b) + 4b = 5[/tex]

[tex]6b+4b = 5[/tex]

Adding like terms: 6b+4b = 10b

[tex]10b = 5[/tex]

Dividing both sides by 10

[tex]\frac{10b}{10}=\frac{5}{10}[/tex]

simplify

[tex]b=\frac{1}{2}[/tex]

so

a = 3b ⇒ a = 3(1/2) = 3/2

Therefore, the value of 3a can be determined by substituting a = 3/2 in 3a.

3a = 3(3/2) = 9/2

Therefore, the value of 3a = 9/2