Three liquids that will not mix are poured into a cylindrical container. The volumes and densities of the liquids are 0.50 L, 2.6 g/cm³; 0.25 L, 1.0 g/cm³; and 0.40 L, 0.80 g/cm³. What is the force on the bottom of the container due to these liquids? One liter = 1 L = 1000 cm³. (Ignore the contribution due to the atmosphere.)

Respuesta :

Answer:

The force is  [tex]F = 18.33 \ N[/tex]

Explanation:

From the question we are told that

    The number of liquids is  n =  3

      The volume of the first liquid is [tex]V_1 = 0.50 L = 0.0005 \ m^3[/tex]

      The density of the first liquid is  [tex]\rho_1 = 2.6 \ g/cm^3[/tex]

      The volume of the second  liquid is [tex]V_2 = 0.25 L = 250\ cm^3[/tex]

      The density of the second liquid is  [tex]\rho_2 = 1.0 \ g/cm^3[/tex]

      The volume of the third  liquid is [tex]V_3 = 0.40 L = 400\ cm^3[/tex]

      The density of the  third  liquid is  [tex]\rho_3 = 0.80 \ g/cm^3[/tex]

Generally the force at the bottom of the container is mathematically represented  as

    [tex]F = m_t * g[/tex]

Here [tex]g = 980.665 \ cm/s^2[/tex]

Here  [tex]m_t[/tex]  is the total mass of all the liquid which is mathematically represented as

             [tex]m_t = ( V_1 * \rho_1 )+ ( V_2 * \rho_2)+ ( V_3 * \rho_3)[/tex]

=>         [tex]m_t = ( 500 * 2.6)+ ( 250 * 1.0 )+ ( 400 * 0.80 )[/tex]

=>         [tex]m_t = 1870 \ g[/tex]

So

       [tex]F = 1870 * 980.66[/tex]

=>   [tex]F = 1833843.55 \ g \cdot cm /s^2[/tex]

=>    [tex]F = 1833843.55 \ g \cdot cm /s^2 = \frac{1833843.55}{1000 * 100} kg \cdot m /s^2[/tex]

=>    [tex]F = 18.33 \ N[/tex]