What is Which equation correctly demonstrates the Distributive Property? F. $a\left(b+c\right)=ab+c$ G. $a\left(b+c\right)=ab+ac$ H. $a+\left(b+c\right)=\left(a+b\right)+\left(a+c\right)$ I. $a+\left(b+c\right)=\left(a+b\right)\cdot\left(a+c\right)$

Respuesta :

Answer:

[tex]G.\ $a\left(b+c\right)=ab+ac$[/tex]

Step-by-step explanation:

Given

[tex]F.\ $a\left(b+c\right)=ab+c$[/tex]

[tex]G.\ $a\left(b+c\right)=ab+ac$[/tex]

[tex]H.\ $a+\left(b+c\right)=\left(a+b\right)+\left(a+c\right)$[/tex]

[tex]I.\ $a+\left(b+c\right)=\left(a+b\right)\cdot\left(a+c\right)$[/tex]

Required

Which of the options shows Distributive Property

Distributive property states that

For: [tex]a(b + c)[/tex]

The equivalent is: [tex]ab + ac[/tex]

In other words:

[tex]a(b + c) = ab + ac[/tex] ----- (1)

Having mentioned that;

Next, we compare the list of given options to (1) above

Option G matches (1).

[tex]G.\ $a\left(b+c\right)=ab+ac$[/tex]

Hence, option G correctly demonstrates distributive property