Answer:
[tex]G.\ $a\left(b+c\right)=ab+ac$[/tex]
Step-by-step explanation:
Given
[tex]F.\ $a\left(b+c\right)=ab+c$[/tex]
[tex]G.\ $a\left(b+c\right)=ab+ac$[/tex]
[tex]H.\ $a+\left(b+c\right)=\left(a+b\right)+\left(a+c\right)$[/tex]
[tex]I.\ $a+\left(b+c\right)=\left(a+b\right)\cdot\left(a+c\right)$[/tex]
Required
Which of the options shows Distributive Property
Distributive property states that
For: [tex]a(b + c)[/tex]
The equivalent is: [tex]ab + ac[/tex]
In other words:
[tex]a(b + c) = ab + ac[/tex] ----- (1)
Having mentioned that;
Next, we compare the list of given options to (1) above
Option G matches (1).
[tex]G.\ $a\left(b+c\right)=ab+ac$[/tex]
Hence, option G correctly demonstrates distributive property