taac246
contestada

17. Write a rational function in expanded form that satisfies the
following criteria:
• V.A. x=2
• SI.A y =5x-1
• Zero of function (-1,0)

pls help thank you<3

Respuesta :

Answer:

[tex]f(x) = \frac{5x^2 + 4x - 1}{x - 2}[/tex]

Step-by-step explanation:

Given

VA; [tex]x = 2[/tex]

SLA: [tex]y = 5x - 1[/tex]

Zero of function: [tex](-1,0)[/tex]

Required

Determine the rational function in expanded form

Analyzing the vertical asymptote

The vertical asymptote is given as:

[tex]x = 2[/tex]

Subtract 2 from both sides

[tex]x - 2 = 2 - 2[/tex]

[tex]x - 2 = 0[/tex]

This means that the denominator must be [tex]x - 2[/tex]

Analyzing the zero of the function

The zero of the function is given as: [tex](-1,0)[/tex]

This means that [tex]x = -1[/tex], when [tex]y = 0[/tex]

Equate [tex]x = -1[/tex] to 0 by add 1 to both sides

[tex]x + 1 =- 1 + 1[/tex]

[tex]x + 1 =0[/tex]

This means that one of the numerators must be [tex]x + 1[/tex]

Analyzing the slant asymptote:

[tex]y = 5x - 1[/tex]

This means that one of the numerators must be [tex]5x - 1[/tex]

Hence, the function is:

[tex]f(x) = \frac{(5x - 1)(x+1)}{x - 2}[/tex]

Expand the numerator

[tex]f(x) = \frac{5x^2 + 5x - x - 1}{x - 2}[/tex]

[tex]f(x) = \frac{5x^2 + 4x - 1}{x - 2}[/tex]