Answer:
[tex]f(x) = \frac{5x^2 + 4x - 1}{x - 2}[/tex]
Step-by-step explanation:
Given
VA; [tex]x = 2[/tex]
SLA: [tex]y = 5x - 1[/tex]
Zero of function: [tex](-1,0)[/tex]
Required
Determine the rational function in expanded form
Analyzing the vertical asymptote
The vertical asymptote is given as:
[tex]x = 2[/tex]
Subtract 2 from both sides
[tex]x - 2 = 2 - 2[/tex]
[tex]x - 2 = 0[/tex]
This means that the denominator must be [tex]x - 2[/tex]
Analyzing the zero of the function
The zero of the function is given as: [tex](-1,0)[/tex]
This means that [tex]x = -1[/tex], when [tex]y = 0[/tex]
Equate [tex]x = -1[/tex] to 0 by add 1 to both sides
[tex]x + 1 =- 1 + 1[/tex]
[tex]x + 1 =0[/tex]
This means that one of the numerators must be [tex]x + 1[/tex]
Analyzing the slant asymptote:
[tex]y = 5x - 1[/tex]
This means that one of the numerators must be [tex]5x - 1[/tex]
Hence, the function is:
[tex]f(x) = \frac{(5x - 1)(x+1)}{x - 2}[/tex]
Expand the numerator
[tex]f(x) = \frac{5x^2 + 5x - x - 1}{x - 2}[/tex]
[tex]f(x) = \frac{5x^2 + 4x - 1}{x - 2}[/tex]