Respuesta :
Answer:
The perimeter of the downtown area is 56 units.
Step-by-step explanation:
From Geometry we know that perimeter ([tex]p[/tex]), dimensionless, is the sum of the lengths of the rectangle, that is, its 4 sides:
[tex]p = AB + BC + CD + DA[/tex] (1)
Where [tex]AB[/tex], [tex]BC[/tex], [tex]CD[/tex] and [tex]DA[/tex] are the sides of the rectangle, dimensionless.
Each side length is determined by Pythagorean Theorem:
[tex]AB = \sqrt{(9-9)^{2}+(-2-9)^{2}}[/tex]
[tex]AB = 11[/tex]
[tex]BC = \sqrt{(-8-9)^{2}+[-2-(-2)]^{2}}[/tex]
[tex]BC = 17[/tex]
[tex]CD = \sqrt{[-8-(-8)]^{2}+[9-(-2)]^{2}}[/tex]
[tex]CD = 11[/tex]
[tex]DA = \sqrt{[9-(-8)]^{2}+(9-9)^{2}}[/tex]
[tex]DA = 17[/tex]
Then, the perimeter of the downtown area is:
[tex]p = 11+17+11+17[/tex]
[tex]p = 56[/tex]
The perimeter of the downtown area is 56 units.