Use the change of base rule to find the logarithm to four decimal places. (2 points) log base nine of 0.877.

Respuesta :

Given:

The value is [tex]\log_90.877[/tex].

To find:

The logarithm to four decimal places using the change of base rule.

Solution:

We have,

[tex]\log_90.877[/tex]

Using the change of base rule, we get

[tex]\log_90.877=\dfrac{\log_{10}0.877}{\log_{10}9}[/tex]      [tex][\because \log_yx=\dfrac{\log_ax}{\log_ay}][/tex]

[tex]\log_90.877=\dfrac{-0.057000}{0.9542425}[/tex]

[tex]\log_90.877=-0.0597332439081[/tex]

Round the value to the four decimal places.

[tex]\log_90.877\approx -0.0597[/tex]

Therefore, the required value is -0.0597.