Answer:
The answer is "[tex]0.39010989[/tex]"
Explanation:
[tex]PMT= 100\\\\n= 4 \times 12 =48 \\\\r= \frac{6.0}{12}= 0.005[/tex]
PV =?
[tex]PV= PMT\times \frac{(1-\frac{1}{1+r^n})}{r}[/tex]
[tex]=100 \times \frac{(1-\frac{1}{1+0.005^{48}})}{0.005}\\\\=100 \times \frac{(1-\frac{1}{1+3.55})}{0.005}\\\\=100 \times \frac{(1-\frac{1}{4.55})}{0.005}\\\\=100 \times \frac{(\frac{4.55 -1}{4.55})}{0.005}\\\\=100 \times \frac{(\frac{3.55}{4.55})}{0.005}\\\\=100 \times 0.0039010989\\\\=0.39010989[/tex]