Review the table.

Number of days since rumor started 0 1 2 3 4 5
Number of people hearing rumor 10 16 26 42 66 100
The table shows how a rumor spreads over the course of 5 days. Which function models this scenario?

Review the table Number of days since rumor started 0 1 2 3 4 5 Number of people hearing rumor 10 16 26 42 66 100 The table shows how a rumor spreads over the c class=

Respuesta :

Answer:

The function that models the scenario is given as follows;

[tex]P(t) = \dfrac{500}{1 + 49 \cdot e^{-0.5 \cdot t}}[/tex]

Step-by-step explanation:

The table of values are presented as follows;

The number of days, t, since the rumor started: 0, 1, 2, 3, 4, 5

The number of people, P, hearing the rumor: 10, 16, 26, 42, 66, 100

Imputing the given functions from the options into Microsoft Excel, and

[tex]A = P(t) = \dfrac{250}{1 + 24 \cdot e^{-0.5 \cdot t}}[/tex]

[tex]B = P(t) = \dfrac{500}{1 + 49 \cdot e^{-0.5 \cdot t}}[/tex]

[tex]C = P(t) = \dfrac{750}{1 + 74 \cdot e^{-0.5 \cdot t}}[/tex]

[tex]D = P(t) = \dfrac{1000}{1 + 99 \cdot e^{-0.5 \cdot t}}[/tex]

solving using the given values of the variable, t, we have;

P                t               A                 B       [tex]{}[/tex]             C                      D

10        [tex]{}[/tex]      0        [tex]{}[/tex]     10        [tex]{}[/tex]         10        [tex]{}[/tex]          10        [tex]{}[/tex]             10

16        [tex]{}[/tex]      1        [tex]{}[/tex]      16.07021       16.27604      16.34583        [tex]{}[/tex] 16.38095

26        [tex]{}[/tex]     2        [tex]{}[/tex]     25.43466      26.2797       26.574             26.72363

42        [tex]{}[/tex]     3        [tex]{}[/tex]     39.33834      41.89929      42.82868         43.30901

66        [tex]{}[/tex]     4        [tex]{}[/tex]     58.85058      65.51853      68.09014         69.45316

100        [tex]{}[/tex]   5        [tex]{}[/tex]     84.17395        99.55866    106.0177          109.5721

Therefore, by comparison, the function represented by [tex]B = P(t) = \dfrac{500}{1 + 49 \cdot e^{-0.5 \cdot t}}[/tex] most accurately models the scenario.

Answer:

For anyone lazy to read answer above, it's B

Step-by-step explanation:

Edg2020