Answer:
[tex]\displaystyle f^{-1}(x)=\frac{1+x}{3x}[/tex]
Step-by-step explanation:
The Inverse of a Function
The procedure to find the inverse of the function is:
* Write the function as a two-variable equation:
[tex]\displaystyle y=\frac{1}{3x-1}[/tex]
* Solve the equation for x.
Multiply by 3x-1
[tex]y(3x-1)=1[/tex]
Divide by y:
[tex]\displaystyle 3x-1=\frac{1}{y}[/tex]
Sum 1:
[tex]\displaystyle 3x=\frac{1}{y}+1[/tex]
Operate the right side:
[tex]\displaystyle 3x=\frac{1+y}{y}[/tex]
Divide by 3:
[tex]\displaystyle x=\frac{1+y}{3y}[/tex]
* Swap the variables:
[tex]\displaystyle y=\frac{1+x}{3x}[/tex]
Write back into function form:
[tex]\boxed{\displaystyle f^{-1}(x)=\frac{1+x}{3x}}[/tex]