Respuesta :

Answer:

[tex]\displaystyle f^{-1}(x)=\frac{1+x}{3x}[/tex]

Step-by-step explanation:

The Inverse of a Function

The procedure to find the inverse of the function is:

* Write the function as a two-variable equation:

[tex]\displaystyle y=\frac{1}{3x-1}[/tex]

* Solve the equation for x.

Multiply by 3x-1

[tex]y(3x-1)=1[/tex]

Divide by y:

[tex]\displaystyle 3x-1=\frac{1}{y}[/tex]

Sum 1:

[tex]\displaystyle 3x=\frac{1}{y}+1[/tex]

Operate the right side:

[tex]\displaystyle 3x=\frac{1+y}{y}[/tex]

Divide by 3:

[tex]\displaystyle x=\frac{1+y}{3y}[/tex]

* Swap the variables:

[tex]\displaystyle y=\frac{1+x}{3x}[/tex]

Write back into function form:

[tex]\boxed{\displaystyle f^{-1}(x)=\frac{1+x}{3x}}[/tex]