Verify by substitution whetherthe given functions are solutions of the given DE. Primes denote derivatives with respect to x.y!! +y′= cos 2x;y"= cosx+sinx,y # = cos 2x,y$ =sin 2x

Respuesta :

Complete Question

The complete question is shown on the first uploaded

Answer:

[tex]y_1[/tex] is not a solution of the differential equation

 [tex]y_2[/tex] is not a solution of the differential equation

[tex]y_3[/tex] is not a solution of the differential equation

Step-by-step explanation:

The differential equation given is [tex]y'' + y' = cos2x[/tex]

Let consider the first equation to substitute

[tex]y_1 = cosx +sinx[/tex]

[tex]y_1' = -sinx +cosx[/tex]

[tex]y_1'' = -cosx -sinx[/tex]

So

[tex]y_1'' - y_1' = -cosx -sinx -sinx +cosx[/tex]

[tex]y_1'' + y_1' = -2sinx [/tex]

So

[tex] -2sinx \ne cos2x [/tex]

This means that [tex]y_1[/tex] is not a solution of the differential equation

Let consider the second equation to substitute

[tex]y_2 = cos2x[/tex]

[tex]y_2' = -2sin2x[/tex]

[tex]y_2'' = -4cos2x[/tex]

So

[tex]y_2'' + y_2' = -4cos2x-2sin2x [/tex]

So

[tex] -4cos2x-2sin2x \ne cos2x [/tex]

This means that [tex]y_2[/tex] is not a solution of the differential equation

Let consider the third equation to substitute

[tex]y_3 = sin 2x[/tex]

   [tex]y_3' =  2cos 2x[/tex]

    [tex]y_3'' =  -4sin2x[/tex]

So

[tex]y_3'' + y_3' = -4sin2x - 2cos2x [/tex]

So

[tex] -4sin2x - 2cos2x \ne cos2x [/tex]

This means  that  [tex]y_3[/tex] is not a solution of the differential equation

Ver imagen okpalawalter8