Respuesta :

Answer:

[tex]f(-1) = \frac{5}{2}[/tex]

[tex]f(0) = 5[/tex]

[tex]f(2) = 20[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 5(2^x)[/tex]

Required

Determine f(-1); f(0) and f(2)

Solving f(-1)

In this case, we simply take x as;

[tex]x = -1[/tex]

Substitute -1 for x in [tex]f(x) = 5(2^x)[/tex]

[tex]f(-1) = 5(2^{-1})[/tex]

Apply law of indices

[tex]f(-1) = 5 * \frac{1}{2}[/tex]

[tex]f(-1) = \frac{5}{2}[/tex]

Solving f(0)

In this case, we simply take x as;

[tex]x = 0[/tex]

Substitute 0 for x in [tex]f(x) = 5(2^x)[/tex]

[tex]f(0) = 5(2^0)[/tex]

[tex]f(0) = 5(1)[/tex]

[tex]f(0) = 5[/tex]

Solving f(2)

In this case, we simply take x as;

[tex]x = 2[/tex]

Substitute 2 for x in [tex]f(x) = 5(2^x)[/tex]

[tex]f(2) = 5(2^2)[/tex]

[tex]f(2) = 5(4)[/tex]

[tex]f(2) = 20[/tex]