Answer:
[tex]f(-1) = \frac{5}{2}[/tex]
[tex]f(0) = 5[/tex]
[tex]f(2) = 20[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 5(2^x)[/tex]
Required
Determine f(-1); f(0) and f(2)
Solving f(-1)
In this case, we simply take x as;
[tex]x = -1[/tex]
Substitute -1 for x in [tex]f(x) = 5(2^x)[/tex]
[tex]f(-1) = 5(2^{-1})[/tex]
Apply law of indices
[tex]f(-1) = 5 * \frac{1}{2}[/tex]
[tex]f(-1) = \frac{5}{2}[/tex]
Solving f(0)
In this case, we simply take x as;
[tex]x = 0[/tex]
Substitute 0 for x in [tex]f(x) = 5(2^x)[/tex]
[tex]f(0) = 5(2^0)[/tex]
[tex]f(0) = 5(1)[/tex]
[tex]f(0) = 5[/tex]
Solving f(2)
In this case, we simply take x as;
[tex]x = 2[/tex]
Substitute 2 for x in [tex]f(x) = 5(2^x)[/tex]
[tex]f(2) = 5(2^2)[/tex]
[tex]f(2) = 5(4)[/tex]
[tex]f(2) = 20[/tex]