Respuesta :

Answer:

[tex]f^{-1}(6) = 2[/tex]

Step-by-step explanation:

Given

[tex]f(2) = 6[/tex]

[tex]f(3) = 7[/tex]

Required

[tex]f^{-1}(6)[/tex]

First, we need to determine the slope of the function using;

[tex]m = \frac{y_1 - y_2}{x_1 - x_2}[/tex]

From the given parameters;

In [tex]f(2) = 6[/tex]

x = 2; y =6 --- Take this as x1 and y1

In [tex]f(3) = 7[/tex]

x = 3; y = 7 --- Take this as x2 and y2

[tex]m = \frac{y_1 - y_2}{x_1 - x_2}[/tex] becomes

[tex]m = \frac{6 - 7}{2 - 3}[/tex]

[tex]m = \frac{- 1}{ - 1}[/tex]

[tex]m = 1[/tex]

Next, we determine the equation of the function using

[tex]y - y_1 = m(x - x_1)[/tex]

Substitute the values of x1,y1 and m

[tex]y - 6 = 1(x - 2)[/tex]

Open bracket

[tex]y - 6 = x - 2[/tex]

Add 6 to both sides

[tex]y - 6 + 6 = x -2 +6[/tex]

[tex]y = x + 4[/tex]

Next is to determine the inverse function by swapping the positions of x and y

[tex]x = y + 4[/tex]

Make y the subject of formula;

[tex]y = x - 4[/tex]

Replace y with [tex]f^{-1}(x)[/tex]

[tex]f^{-1}(x) = x - 4[/tex]

Now, we can solve for [tex]f^{-1}(6)[/tex]

Substitute 6 for x

[tex]f^{-1}(6) = 6 - 4[/tex]

[tex]f^{-1}(6) = 2[/tex]

I GOT THAT THANG ON MY HOMIEEEEE