Respuesta :
Answer:
El valor máximo de los platos a ordenar en el almuerzo es de $ 20.32.
Step-by-step explanation:
Sea [tex]c[/tex] el coste máximo que puede asumir el comensal, medido en pesos, el cual es representada por la siguiente suma:
[tex]c = c_{o} + c_{i} + c_{ii}[/tex]
Donde:
[tex]c_{o}[/tex] - Coste del consumo, medido en pesos.
[tex]c_{i}[/tex] - Coste del impuesto en el condado, medido en pesos.
[tex]c_{ii}[/tex] - Coste de la propina, medido en pesos.
Ahora, los costes por impuesto y por propina se determinan en función del coste de consumo:
Coste del impuesto en el condado
[tex]c_{i} = r_{i}\cdot c_{o}[/tex]
Donde [tex]r_{i}[/tex] es la razón entre el coste del impuesto en el condado y el coste del consumo, adimensional.
Coste de la propina
[tex]c_{ii} = r_{ii}\cdot (c_{o}+c_{i})[/tex]
[tex]c_{ii} = r_{ii}\cdot (c_{o}+r_{i}\cdot c_{o})[/tex]
[tex]c_{ii} = r_{ii}\cdot (1 + r_{i})\cdot c_{o}[/tex]
Donde [tex]r_{ii}[/tex] es la razón entre el coste de la propina y la suma de los costes de consumo y del impuesto del condado, adimensional.
Entonces, la suma completa queda representada por:
[tex]c = c_{o} + r_{i}\cdot c_{o}+r_{ii}\cdot (1+r_{i})\cdot c_{o}[/tex]
[tex]c = [1+r_{i}+r_{ii}\cdot (1+r_{i})]\cdot c_{o}[/tex]
A continuación, se despeja el coste de consumo (valor máximo de los platos):
[tex]c_{o} = \frac{c}{1 +r_{i}+r_{ii}\cdot (1+r_{i})}[/tex]
Si [tex]c = \$\,25[/tex], [tex]r_{i} = 0.07[/tex] y [tex]r_{ii} = 0.15[/tex], entonces:
[tex]c_{o} = \frac{\$\,25}{1+0.07+0.15\cdot (1+0.07)}[/tex]
[tex]c_{o} = \$\,20.32[/tex]
El valor máximo de los platos a ordenar en el almuerzo es de $ 20.32.