The average daily volume of a computer stock in 2011 was ų=35.1 million shares, according to a reliable source. A stock analyst believes that the stock volume in 2014 is different from the 2011 level. Based on a random sample of 30 trading days in 2014, he finds the sample mean to be 32.7 million shares, with a standard deviation of s=14.6 million shares. Test the hypothesis by constructing a 95% confidence interval. Complete a and b A. State the hypothesis B. Construct a 95% confidence interval about the sample mean of stocks traded in 2014.

Respuesta :

Answer:

a

   The  null hypothesis is  [tex]H_o : \mu = 35 .1 \ million \ shares[/tex]

    The  alternative hypothesis  [tex]H_a : \mu \ne 35.1\ million \ shares[/tex]

b

 The   95% confidence interval is  [tex]27.475 < \mu < 37.925[/tex]

Step-by-step explanation:

From the question the we are told that

      The  population mean is  [tex]\mu = 35.1 \ million \ shares[/tex]

      The  sample size is  n = 30

       The  sample mean is  [tex]\= x = 32.7 \ million\ shares[/tex]

       The standard deviation is  [tex]\sigma = 14.6 \ million\ shares[/tex]

     

Given that the confidence level is  [tex]95\%[/tex] then the level of significance is mathematically represented as

                  [tex]\alpha = 100-95[/tex]

                  [tex]\alpha = 5\%[/tex]

=>               [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table

    The value is  [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]

Generally the margin of error is mathematically represented as

                 [tex]E = Z_{\frac{\alpha }{2} } * \frac{ \sigma }{\sqrt{n} }[/tex]

substituting values

                [tex]E = 1.96 * \frac{ 14.6 }{\sqrt{30} }[/tex]

                [tex]E = 5.225[/tex]

The 95% confidence interval confidence interval is mathematically represented as

              [tex]\= x -E < \mu < \= x +E[/tex]

substituting values

               [tex]32.7 - 5.225 < \mu < 32.7 + 5.225[/tex]

                [tex]27.475 < \mu < 37.925[/tex]