Find the value of sin(θ) for an angle theta in standard position with a terminal ray that passes through the point (4,-3)

Respuesta :

Answer:

[tex]\dfrac{-3}{5}[/tex]

Step-by-step explanation:

It is given that a terminal ray that passes through the point (4,-3).

x = 4

y = -3

Using Pythagoras theorem, the value of hypotenuse is

[tex]r=\sqrt{x^2+y^2}[/tex]  

[tex]r=\sqrt{(-3)^2+(4)^2}[/tex]  

[tex]r=\sqrt{9+16}[/tex]  

[tex]r=\sqrt{25}[/tex]  

[tex]r=5[/tex]

We, know that

[tex]\sin \theta = \dfrac{y}{r}[/tex]

[tex]\sin \theta = \dfrac{-3}{5}[/tex]

Therefore, the value of [tex]\sin \theta[/tex] is [tex]\dfrac{-3}{5}[/tex].