Respuesta :
Answer: 6 cajas de cada tipo de fruta.
Step-by-step explanation:
En cada caja de manzanas, tenemos 13 manzanas.
En cada caja de limones, tenemos 17 limones.
Si el numero total de cajas es C, entonces el numero total de manzanas es:
C*13
y el numero total de limones es: C*17.
Si en total tenemos 180 frutas, entonces tenemos que:
C*13 + C*17 = 180
C*(13 + 17) = 180
C*30 = 180
C = 180/30 = 6
Tenemos 6 cajas de cada tipo de fruta.
Answer:
[tex]\large \boxed{\text{6 boxes of apples and 6 boxes of lemons}}[/tex]
Step-by-step explanation:
Let m = the number of boxes of apples. Then
13m = the number of apples
Let l = the number of boxes of lemons. Then
17l = the number of lemons and
13m + 17l = the total number of fruits
You have two conditions:
[tex]\begin{array}{rrclr}(1) & m & = &l\\(2) & 13m + 17l & = & 180\\\end{array}[/tex]
Solve the equations for m and l
[tex]\begin{array}{rrcll}(1) & m & = & l&\\(2) & 13m + 17l & = & 180\\(3)&13m +17m & = & 180 & \text{Substituted (1) into (2)}\\&30m& = &180 &\text{Simplified}\\(4)&m& = &\mathbf{6} &\text{Divided each side by 30}\\& 6& = &l& \text{Substituted (4) into (1)}\\& l& = &\mathbf{6}& \\\end{array}\\\text{You have $\large \boxed{\textbf{6 boxes of apples and 6 boxes of lemons}}$}[/tex]
Check:
[tex]\begin{array}{ccc}6 = 6 & \qquad & 13(6) + 17(6) = 180\\& \qquad & 78 + 102 =180\\& \qquad & 180 = 180\\\end{array}[/tex]
It checks.