Respuesta :
Answer:
0.3376 mm
Explanation:
The computation of the spacing in mm between the slits is shown below:
As we know that
[tex]d = \frac{m\lambda L}{\Delta y}[/tex]
where,
[tex]\lambda[/tex] = wavelength
L = distance from the scrren
[tex]\Delta y[/tex] = spanning distance
As there are 11 bright fingers seen so m would be
= 11 - 1
= 10
Now placing these values to the above formula
So, the spacing is
[tex]= \frac{(10)(633 \times 10^{-9})(3.2m)}{60 \times 10^{-3}}[/tex]
= 0.3376 mm
We simply applied the above formula.
Answer:
Explanation:
Maximum occurs when the path difference is an integral multiple of wavelength
Here [tex]\lambda[/tex] - Wavelength, [tex]d-[/tex] slit separation and [tex]m-[/tex] Order of pattern
Rearrange the equation for
[tex]\begin{aligned}d &=\frac{m \lambda}{\sin \theta} \\
\text { Here, } \sin \theta &=\frac{y}{L} \quad\left(\begin{array}{l}
\text { Here, } L-\text { separation between slit and screen } \\
y-\text { Distance between respective fringe from center on screen }\end{array}\right)[/tex]
[tex]d=\frac{m \lambda}{\left(\frac{y}{L}\right)} \\
&=\frac{m \lambda L}{y}[/tex]
Here, order
Due to the fact that there are 11 bright fringes seen, you take [tex]11-1=10[/tex]
since starts from 0,1,2,3
Substitute given values
[tex]\begin{aligned}d &=\frac{(10)\left(633 \times 10^{-9} \mathrm{m}\right)(3.2 \mathrm{m})}{60 \times 10^{-3} \mathrm{m}} \\&=\left(3.376 \times 10^{-4} \mathrm{m}\right)\left(\frac{1 \mathrm{mm}}{10^{-3} \mathrm{m}}\right) \\&=0.3376 \mathrm{mm}\end{aligned}[/tex]